
Shape extraction: contour

Edge detection
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Edge detection

• Goal:  Identify sudden changes 
(discontinuities) in an image

• Intuitively, most semantic and shape 
information from the image can be 
encoded in the edges

• More compact than pixels

• Ideal: artist’s line drawing (but artist 
is also using object-level knowledge)

Source: D. Lowe
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Segmentation

• Image segmentation consists into the decomposition of the 
image in segments (i.e. components)

• This process is based on a given criteria of homogeneity
(chromatic, morphologic, motion, depth, etc.)

• From the operational viewpoint, three approach have been 
proposed:

• Clustering image data and growing regions

• Border following

• Search of borders
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Binary Images

• The segmentation process leads to detect an individual object (foreground)  
in contrast to the background so it is a binarization process

• Some applications are by nature binary: black and white printing, writing, 
mechanical parts, bio-imagery like cells or chromosomes, etc. .... 

• Often the originals contains various grey levels due to:
• Electric noise of the camera
• Non-uniform scene illuminations
• Shadowing
• …
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Bimodal Distribution

• The easest solution is a threshold 
applied to the grey levels:

• O(i, j) = 255 se I(i, j) < S 

• O(i, j) = 0 otherwise

• It is required the evaluation of the 
optimal threshold S.

• Operating on the histogram, there 
are two possibilities:

• Finding the minimum

• Applying statistic criteria

Bimodal histogram
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Example: mechanical part

Original
image

Binary
image

Bimodal histogram
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Example: sailing

Threshold = 140

Histogram

Original
image

Binary
image



8

Example: bear

Histogram

Original image
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Example: circle



Texture: Brodatz album
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Border following

• An example of a recursive walk 
over the image, following the 
contour to be exhibited. The 
horizon of an edge point is the 
triangle of depth 5 and basis 6, 
in the direction of the last found 
edge segment. 
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Search of borders
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Analytic derivative model

• The border search can be based on the discontinuity of an 
image feature like the grey level, a texture or a motion 
parameter, the depth in the scene, etc.

• For operators stemming from first order partial derivatives 
a maximum response is looked for, either local maximum 
or over a threshold whether given or adapted 

• Note that the second derivative is used too, and among 
second order operators the Laplacian is peculiarly popular 
as being scalar then isotropic. There, of course, the zero 
crossing – inflection points - are looked for.



Derivatives and edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Source: L. Lazebnik

An edge is a place of rapid change in the image intensity 
function.
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Analytic derivative model

f(x) is the grey level, 
here representing the 
image in one dimension

f’(x) is the first derivative. The  
max determines F/B crossing  

f”(x) is the second derivative
The zero determines F/B crossing 

DARK 

BACKGROUND

LIGHT 

FOREGROUND
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Analytic derivative model

• The first derivative is given by: 

• The second derivative is given by: 

• In 2D the derivate is substituted by the vector gradient 
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Convolution

• The convolution is a linear operator, 
that is applied when the image I(x, y) is 
continue. To the digital image I(i, j) a 
filter is applied represented by the 
mask:

O(x0,y0) = f(x0-x, y0-y) I(x,y) dx dy

O(x,y) =  f(x-i, y-j) I(i,j)
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Example: box filter
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What does it do?
• Replaces each pixel with 

an average of its 
neighborhood

• Achieve smoothing effect 
(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)
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Box Filter



Smoothing with box filter



Practice with linear filters

000

010

000

Original

?

Source: D. Lowe



Practice with linear filters

000
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000

Original Filtered 
(no change)

Source: D. Lowe



Practice with linear filters
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Original
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Source: D. Lowe



Practice with linear filters

000

100

000

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters

Original
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(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original
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Sharpening filter
- Accentuates differences with local 
average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters

-101

-202

-101

Vertical Edge
(absolute value)

Sobel



Other filters

-1-2-1

000

121

Horizontal Edge
(absolute value)

Sobel



More properties
• Commutative: a * b = b * a

• Conceptually no difference between filter and signal
• But particular filtering implementations might break this equality

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)
• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)
• Scalars factor out: ka * b = a * kb = k (a * b)
• Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slid di Ch i h R

Important filter: Gaussian



Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

• Remove “high-frequency” components from the image 
(low-pass filter)

• Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and get same result 

as larger-width kernel would have
– Convolving two times with Gaussian kernel of width σ is same as 

convolving once with kernel of width  σ√2 

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



How big should the filter be?
• Values at edges should be near zero
• Rule of thumb for Gaussian: set filter half-width to 

about 3 σ

Practical matters



Boundary issues

• What about near the edge?
• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Source: S. Marschner



Filtering basics
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood 
around  image pixel F[i,j]

Attribute uniform 
weight to each pixel

Now generalize to allow different weights depending on  
neighboring pixel’s relative position:

Non-uniform weights



Correlation filtering

Filtering an image: replace each pixel with a linear combination of 
its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 
weights in the linear combination.

This is called cross-correlation, denoted 
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What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?

?

Filtering an impulse signal
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What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?

Filtering an impulse signal



Convolution

• Convolution: 
• Flip the filter in both dimensions (bottom to top, right to left)
• Then apply cross-correlation

Notation for 
convolution 
operator

F

H



Convolution vs. correlation

Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?



Separability example

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:



53

Convolution (decomposition)
• In general the convolution is a computer demanding operator, e.g. the 5x5 template:

1  4  6  4  1
4 16 24 16  4
6 24 36 24  6
4 16 24 16  4
1  4  6  4  1

is implemented by 25 multiplications for each pixel; note that often complex template 
may be decomposed in simple 1D operators (e. g. the isotropic, monotonic decreasing 
template)

• The previous convolution can be decomposed in the following two 1D operators:
1  4  6  4  1                   1

et 4
6
4
1

in this implementation only10 (5+5) multiplications per pixel are required

• Note that applying several filters one after another (((a * b1) * b2) * b3) is equivalent 
to applying one filter a * b4 where b4=(b1 * b2 * b3). If this three templates are 3x3 
arrays b4 is a 7x7 template. 

• Each 3x3 kernel has 9 independent values for a total of 27 values meanwhile a general 
7x7 templates has 49 independent values: Not al templates are decomposable in a short 
sequence of smaller ones! Fortunately in important practical cases (e.g. circular 
symmetric and monotonic decreasing) they are.



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Source: D. Hoiem

Intensity profileFirst derivativeNoisy first derivative
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Gradient approximations

• The gradient is a 2D vector

• The digital differential operators are implemented by 
template in which the sum of the kernel parameters is null: 
in a uniform area the result must be  zero (no variation)

• The basic and historical convolution kernels have an 
extension limited to 2x2 and 3x3, for each of the two 
components
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Roberts Operator 

• It is the simplest solution

• Two templates are applied M1 and M2, obtaining the two orthogonal gradient 
components:

• G1=M1*I,   G2=M2*I

• It is very sensible to noise

• The gradient module and phase are:

Gm=  G1
2 + G2

2

G arctg(G2/G1)+/

0
0
1

-1

1
-1
0

0

G1

G2
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Isotropic operator

 Two templates are applied M1 and M2, obtaining the two orthogonal gradient 
components:

Gx=Mx*I, Gy=My*I

• The gradient module and phase are:
Gm=  G1

2 + G2
2

G arctg(Gy/Gx

• In  C: 
• phi = atan2(gy, gx)

0
0
0

1
2
1

-1
-2
-1

2
0

-2

1
0
-1

1
0
-1

Gx

Gy
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Prewitt and Sobel operators

• To simplify the computation often the isotropic filter is 
implemented by these two simplified solutions:

• Prewitt 

• Sobel 

0
0
0

1
1
1

-1
-1
-1

1
0
-1

1
0
-1

1
0
-1

0
0
0

1
2
1

-1
-2
-1

2
0
-2

1
0
-1

1
0
-1

Gx Gy

Gx Gy
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Example Sobel

Original image Module Phase
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Example Sobel

Module PhaseOriginal image
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Sobel operator

0
0
0

1
2
1

-1
-2
-1

2
0
-2

1
0
-1

1
0
-1

G1

G2

vertical  contour

horizontal contour

horizontal gradient

vertical gradient

Original image



65

Sobel operator
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Sobel operator

Module Phase



67

Example (module)



Lateral inhibition



Retinal Receptive Fields

Receptive field structure in ganglion cells:
On-center Off-surround

Stimulus condition Electrical response

Time

Response

© Stephen E. Palmer, 2002
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Receptive field structure in ganglion cells:
On-center Off-surround

Stimulus condition Electrical response

Time

Response

Retinal Receptive Fields

© Stephen E. Palmer, 2002



RF of On-center Off-surround cells 

Receptive Field

Retinal Receptive Fields

© Stephen E. Palmer, 2002

RF of Off-center On-surround cells 

Response Profile

on-center

off-surround

Horizontal Position

Firing
Rate

Receptive Field

Horizontal Position

on-surround

off-center

Response Profile

Firing
Rate



Lateral inhibition

76



77

Lateral inhibition

InhibitionInhibition

Excitation
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Lateral inhibition

• The retina receptor apply a lateral inhibition mechanism.
• The implementation of this mechanism can be done by a 

filter obtained by the difference of two Gaussian of equal 
area, having different  (and amplitude):

• The 'zero-crossing' correspond to the border points.  An 
advantage of this technique is that the produced contour 
are closed.



Gaussian filter

=1

=2

=4



Gaussian filters

• What parameters matter here?
Size of kernel or mask
Note, Gaussian function has infinite support, but discrete filters use finite kernels

σ = 5 with 30 x 30 kernelσ = 5 with 10 x 10 kernel



Gaussian filters

• What parameters matter here?
• Variance of Gaussian: determines extent of smoothing

σ = 5 with 30 x 30 kernelσ = 2 with 30 x 30 kernel
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Gaussian Filter

1 Original image

2 Filtered image  =8

3 Filtered image  =4
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The DoG operator

• This operator is called usually Difference of Gaussians 
(DoG)

• The best results are obtained maintaining the external 
Gaussian as large as possible but avoiding to include more 
than one border

• The internal Gaussian is optimized if it covers just the 
transition area

• Complex scene are better analyzed if a set of different 
DoG filters with various  are applied. 
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The DoG operator



85

DoG Example 
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DoG Example 
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DoG Filter 

Original Filtered         Threshold = 0 Contour 

Original Filtered           Threshold = 0 Contour 



88

DoG:  dependence

Original  = 6

 = 24 = 12
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DoG: contour robustness
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DoG: discretization of grey level and noise

Original                with noise           16 grey levels         8 grey levels
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DoG: spatial discretization



Laplacian

2g  h 
 2g(x,y)
x 2 

 2g(x, y)
y 2









 h(x,y)

2g  h  g 2h

h(x, y)  1
2 2 e


x 2 y 2

2 2

2h(x, y)  x 2  y 2

 4 
2
 2









h(x, y)



John Canny, Rachid Deriche, etc operators 
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Canny edge detector (CED)

a) Filter image with derivative of Gaussian 
b) Find magnitude and orientation of gradient
c) Non-maximum suppression:

a) Thin multi-pixel wide “ridges” down to single pixel width
d) Linking and thresholding (hysteresis):

a) Define two thresholds: low and high
b) Use the high threshold to start edge curves and the low 

threshold to continue them

• MATLAB:   edge(image, ‘canny’);
• >>help edge

Source: D. Lowe, L. Fei-Fei



The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

Forsyth, 2002

CED: a) derivative of Gaussian 



hx (x, y)  h(x,y)
x


x

2 4 e


x 2 y 2

2 2

2

22

2
42

),(),( 


 yx

y ey
y

yxhyxh





Magnitude: 2),(2),( yxyhyxxh  Angle: 













),(
),(

arctan
yxxh
yxyh

Edge strength Edge normal

CED: b) magnitude and orientation of gradient



CED: c) Non-maximum suppression
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original image 
(Lena)

thresholding

How to turn these thick 
regions of the gradient 
into curves?

norm of the gradient



We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve. There are
then two algorithmic issues: at which point is the maximum, and where is
the next one? Forsyth, 2002

CED: c) Non-maximum suppression



CED: Non-maximum suppression

Check if pixel is local maximum along gradient direction, 
select single max across width of the edge

• requires checking interpolated pixels p and r



Examples: Non-Maximum Suppression

courtesy of G. Loy

Original image Gradient magnitude
Non-maxima 
suppressed

Slide credit: Christopher Rasmussen



CED: d) Linking and thresholding (hysteresis)

Thinning (non-maximum suppression)

Problem: 
pixels along 
this edge 
didn’t survive 
the 
thresholding



Assume the marked point is an edge 
point.  Then we construct the tangent to 
the edge curve (which is normal to the 
gradient at that point) and use this to 
predict the next points (here either r or s). 

Forsyth, 2002

CED: d1) Predicting the next edge point



CED: d2) Predicting the next edge point

• Sidebar: Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation



CED: d3) Predicting the next edge point

• Sidebar: Interpolation options
• imx2 = imresize(im, 2, interpolation_type)

• ‘nearest’ 
– Copy value from nearest known
– Very fast but creates blocky edges

• ‘bilinear’
– Weighted average from four nearest known pixels
– Fast and reasonable results

• ‘bicubic’ (default)
– Non-linear smoothing over larger area (4x4)
– Slower, visually appealing, may create negative 

pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation



CED: d4) Closing edge gaps

• Check that maximum value of gradient value is sufficiently 
large

• drop-outs?  use hysteresis
• use a high threshold to start edge curves and a low threshold to 

continue them.

G
ra

di
en

t m
ag

ni
tu

de

t1

t2

Labeled as edge
Pixel number in 
linked list along 
gradient maxima

Not an edge



Example: Canny Edge Detection

courtesy of G. Loy

gap is gone

Original
image

Strong
edges

only

Strong +
connected
weak edges

Weak
edges



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

• Thin multi-pixel wide “ridges” down to single pixel 
width

4. Thresholding and linking (hysteresis):
• Define two thresholds: low and high
• Use the high threshold to start edge curves and the low 

threshold to continue them

• MATLAB: edge(image, ‘canny’) Source: D. Lowe, L. Fei-Fei
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DoG + Sobel
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DoG(2, 9)+Sobel 
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DoG(1, 9)+Sobel 
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Template Matching

• An alternative method for edge detection computes the closest 
(over all four/eight directions) approximations of g(i,j) in 
every 3x3 neighborhood, to keep the one with maximum 
convolution value, provided it is large enough

• Even if the sum of the kernel parameter is null note that 
starting with grey level images in the range 0:255 the final 
range is -3825:+3825 and -1275:1275 for Kirsh and compass 
operators respectively (the equivalent are -255:255, -765:765, 
-871:871, -1020:1020 for Roberts, Prewitt, isotropic and Sobel 
respectively)

• Obviously the greater is the number of values different from 
zero of the kernel parameters the higher is the robustness to 
noise.
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Template Matching

• Kirsh’s operator

• Compass operator 
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3/9 operator

3   2  1
4   8  0
5   6  7

Pi,j=Ii,j+Ii,j-1+Ii,j+1, with (j=1,8)mod 8
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Contour extraction

• Pi, k is the maximum among the 8 parameters Pi,j

• The coefficients 3/2 et 1/3 are introduced to normalize the 
result so that monochromatic area has P=0

• The final threshold can be applied depending on the 
minimum average contrast  admitted in the neighborhood



Practical aspects of the 3/9 filter

• The filter implements a relative gray level intensity 
analisys. Also the human eye apply a similir approach.

• It must be payed attention when looking contours in the 
dark!

• Note that if Pi is low this edge estimation suffers very 
much for the effect of the noise (if the intensity in the area 
is 0 then P=0/0).

• Selecting the threshold for Pi note that it is 9 time di 
average intensity of the area (if the average area intensity 
is 10 over 255, that is very low, then Pi =90, and edges are 
looked for in the very dark)
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Contrast and threshold

• Let us call ‘contrast’ the ratio            , the threshold Th is 
given by:
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Example: Op. 3 / 9
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Example: Op. 3 / 9



Results

Human (0.95)

Pb (0.88)



Results

Human

Pb

Human (0.96)

Global PbPb (0.88)



Brightness

Color

Texture

Combined

Human



Common types of noise

• Salt and pepper noise: 
random occurrences of   
black and white pixels

• Impulse noise: random 
occurrences of white pixels

• Uniform noise: constant 
probability density in a 
given range k

• Gaussian noise: variations 
in intensity drawn from a 
Gaussian normal 
distribution

Original

Gaussian noise

Salt and pepper noise

Impulse noise

Source: S. Seitz



First attempt at a solution

• Let’s replace each pixel with an average of all the values in 
its neighborhood

• Moving average in 1D:

Source: S. Marschner



Weighted Moving Average

• Can add weights to our moving average
• Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner



Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner



Degraded image: uniform noise

• The standard model of this noise is additive, independent at each pixel 
and independent of the signal intensity with continuous uniform 
distribution in a given interval. The noise caused by quantizing the 
pixels to discrete levels has an approximately uniform distribution.

This noise can be simulated adding in each pixel
n=2k(rnd – 0,5) being k the noise max intensity 
and rnd a random number with 0 ≤ rnd ≤ 1
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Degraded image: ‘salt and pepper’

• This is an impulsive or spike noise for which the image has dark pixels and 
bright pixels randomly distributed.

This noise can be simulated for each pixel in this way:
if  rnd ≥ Th1 I(i,j) =  255
if  rnd ≤ Th2  I(i,j) =  0

else n=2[(K- Th2)/(Th1- Th2)](rnd-0,5) and if I(i,j)+n>255: I(i,j)=255, if I(i,j)+n<0:I(i,j)=0
being K the uniform component noise intensity, 0≤rnd≤1, and Th1 and Th2  two suitable 
thresholds (1-Th1  and Th2 are the percentage of extra white and black pixels respectively)
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Average value filter

 Each pixel takes the average 
value over the neighbors (3x3 
in the example)

 Example - given the neighborhood:

3     6     8

3     4     2

5     8     3

the central pixel will take the new 
value:

(3+6+8+3+4+2+5+8+3)/9 = 4.67
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Average value filter: uniform noise

Noisy image Filtered image Second iteration
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Average value filter: uniform noise

Noisy image Filtered image Second iteration
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Average value filter: salt and pepper

Noisy image Filtered image Second iteration
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Average value filter: salt and pepper

Noisy image Filtered image Second iteration
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Median filters

• A Median Filter operates over a window by selecting the 
median intensity in the window.

• What advantage does a median filter have over a mean filter?
• Is a median filter a kind of convolution?

Slide by Steve Seitz



Median filter

Salt and 
pepper 
noise

Median 
filtered

Source: M. Hebert
Plots of a row of the image
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Median and rank filters

 The median filter assigns to pixel 
the median value of  neighborhood

 It is a particular case of the rank 
filters family, in which to the  pixel 
is assigned the average value over a 
predefined range of the neighbors 
histogram.

 The average excluding the extremes 
is suited for impulse or spike noise 
such as the salt and pepper case.

 Example - given the neighborhood:

3     6     8
3     4     2
5     8     3

the correspondent values are:
2   3   3   3   4   5   6    8   8

median value: 4; 
over three values: 4;
over five values: 4,2; 
over seven values: 4,57
over nine values: 4,66
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Median filter: uniform noise

Noisy image Filtered image Second iteration Rank 3
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Median filter: uniform noise

Noisy image Filtered image Second iteration Rank 3
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Median filter: salt and pepper

Noisy image Filtered image Second iteration Rank 3
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Median filter: salt and pepper

Noisy image Filtered image Second iteration Rank 3
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Comparison: salt and pepper noise

3x3

5x5

7x7

Mean Gaussian Median

Slide by Steve Seitz
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The Nagao-Matsuyama Filter
This filter selects for the centre
pixel the average for the orientation 
with the least variation. Hence, the 
steps are as follows: 

1. Calculate the variance for each of the 
nine sub-groups shown to the right 
(including the centre pixel).

2. Determine the sub-group with the 
lowest variance.

3. Assign the mean of this sub-group to 
the centre pixel.

Nagao-Matsuyama improves the 
borders, and is effective at reducing 
the edges smoothing. Clearly there 
is a cost in terms of computation 
due to the calculation of nine 
variances for each pixel. 
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Nagao filter: uniform noise

Noisy image Filtered image
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Nagao filter: uniform noise

Noisy image Filtered image
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Nagao filter: salt and pepper

Noisy image Filtered image
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Nagao filter: salt and pepper

Noisy image Filtered image


